Space Telescopes We are designing and building the world's first multi-purpose commercial space telescope that can be used for Earth observation, Astronomy, and Space Situational Awareness.
Laser Communications We are using our own laser communication system for data downlinks and satellite-to-satellite communications to provide higher speeds, longer range, and lower costs of data transfer.
Advanced electronics Our satellites need to work for long periods of time in high radiation environments. We are customizing both our hardware and software to remain operational when radiation causes logic upsets, while reducing costs by using redundant commercial off the shelf integrated circuits. We will use an advanced multi-core 64 bit capable computer design with error correcting RAM and programmable hardware acceleration for our entire line of space telescope, asteroid mining, and space manufacturing satellites.
Ion engine accelerator We are developing an ion accelerator, designed to augment the thrust from existing cubesat sized ion engines. The ion accelerator is lightweight and efficient, and is unfolded when in orbit. The lightweight accelerator photovoltaic cells and circuitry are external and separate from the rest of the satellite, avoiding the need for an expensive, bulky, and heavy thermal radiator. The accelerator will substantially increase the ion engine's thrust, as well as its Isp (specific impulse), and can be scaled up to handle very large and high power ion engines. The accelerator will greatly reduce the cost of reaching and moving space debris, as well as reaching asteroids.